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1 Multiprocessors and

Computational Grids

Multiprocessor computing platforms, which
have become available more and more widely
since the mid-1980s, are now heavily used by
organizations that need to solve very demand-
ing computational problems. There has also
been a great deal of research on computational
techniques that are suited to these platforms,
and on the software infrastructure needed to
compile and run programs on them. Paral-
lel computing is now central to the culture
of many research communities, in such ar-
eas as meteorology, computational physics and
chemistry, and cryptography. Nevertheless,
fundamental research in numerical techniques
for these platforms remains a major topic of
investigation in numerical PDE and numerical
linear algebra.

The nature of parallel platforms has evolved
rapidly during the past 15 years. The eight-
ies saw a profusion of manufacturers (Intel,
Denelcor, Alliant, Thinking Machines, Con-
vex, Encore, Sequent, among others) with
a corresponding proliferation of architectural
features: hypercube, mesh, and ring topolo-
gies; shared and distributed memories; mem-
ory hierarchies of di�erent types; buttery
switches; and global buses. Compilers and
runtime support tools were machine speci�c
and idiosyncratic. Argonne's Advanced Com-

�Mathematics and Computer Science Division, Ar-

gonneNational Laboratory, and Computer ScienceDe-

partment, University of Chicago.

puting Research Facility kept a zoo of these
machines during the late 1980s, allowing free
access to many researchers in the United
States and giving many of us our �rst taste
of this brave new world.

By the early 1990s, the situation had started
to change and stabilize. Most of the vendors
went out of business, and their machines grad-
ually were turned o�|one processor at a time,
in some cases. Architectures gravitated to-
ward two easily understood paradigms that
prevail today. One paradigm is the shared-
memory model typi�ed by the SGI Origin se-
ries and by computers manufactured by Sun
and Hewlett-Packard. The other paradigm,
typi�ed by the IBM SP series, can be viewed
roughly as a uniform collection of processors,
each with its own memory and all able to pass
messages to one another at a rate roughly in-
dependent of the locations of the two proces-
sors involved. On the software side, the advent
of software tools such as p4, MPI, and PVM
allowed users to write code that could be com-
piled and executed without alteration on the
machines of di�erent manufacturers, as well as
on networks of workstations.

The optimization community was quick to
take advantage of parallel computers. In de-
signing optimization algorithms for these ma-
chines, it was best in some cases to exploit par-
allelism at a lower level (that is, at the level
of the linear algebra or the function/derivative
evaluations) and leave the control ow of the
optimization algorithm essentially unchanged.
Other cases required a complete rethinking
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of the algorithms, to allow simultaneous ex-
ploration of di�erent regions of the solution
space, di�erent parts of the branch-and-bound
tree, or di�erent candidates for the next it-
erate. Novel parallel approaches were devel-
oped for global optimization, network opti-
mization, and direct-search methods for non-
linear optimization. Activity was particularly
widespread in parallel branch-and-bound ap-
proaches for various problems in combinato-
rial and network optimization, as a brief Web
search can attest.

As the cost of personal computers and low-
end workstations has continued to fall, while
the speed and capacity of processors and net-
works have increased dramatically, \cluster"
platforms have become popular in many set-
tings. Though the software infrastructure has
yet to mature, clusters have made supercom-
puting inexpensive and accessible to an even
wider audience.

A somewhat di�erent type of parallel com-
puting platform known as a computational
grid (alternatively, metacomputer) has arisen
in comparatively recent times [1]. Broadly
speaking, this term refers not to a multiproces-
sor with identical processing nodes but rather
to a heterogeneous collection of devices that
are widely distributed, possibly around the
globe. The advantage of such platforms is ob-
vious: they have the potential to deliver enor-
mous computing power. (A particular type of
grid, one made up of unused compute cycles
of workstations on a number of campuses, has
the additional advantage of costing essentially
nothing.) Just as obviously, however, the com-
plexity of grids makes them very di�cult to
use. The software infrastructure and the ap-
plications programs that run on them must be
able to handle the following features:

heterogeneity of the various processors in
the grid;

the dynamic nature of the platform (the
pool of processors available to the user

may grow and shrink during the compu-
tation);

the possibility that a processor perform-
ing part of the computation may disap-
pear without warning;

latency (that is, time for communications
between the processors) that is highly
variable but often slow.

In many applications, however, the potential
power and/or low cost of computational grids
make the e�ort of meeting these challenges
worthwhile. The Condor team, headed by
Miron Livny at the University of Wisconsin,
were among the pioneers in providing infras-
tructure for grid computations. The Condor
system can be used to assemble a parallel plat-
form from workstations, PC clusters, and mul-
tiprocessors and can be con�gured to use only
\free" cycles on these machines, sharing them
with their respective owners and other users.
More recently, the Globus project has devel-
oped technologies to support computations on
geographically distributed platforms consist-
ing of high-end computers, storage and visu-
alization devices, and other scienti�c instru-
ments.
In 1997, we started the metaneos project

as a collaborative e�ort between optimization
specialists and the Condor and Globus groups.
Our aim was to address complex, di�cult op-
timization problems in several areas, design-
ing and implementing the algorithms and the
software infrastructure needed to solve these
problems on computational grids. A coordi-
nated e�ort on both the optimization and the
computer science sides was essential. The ex-
isting Condor and Globus tools were inade-
quate for direct use as a base for programming
optimization algorithms, whose control struc-
tures are inevitably more complex than those
required for task-farming applications. Many
existing parallel algorithms for optimization
were \not parallel enough" to exploit the full
power of typical grid platforms. Moreover,
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they were often \not asynchronous enough,"
in that they required too much communica-
tion between tasks to execute e�ciently on
platforms with the heterogeneity and commu-
nications latency properties of our target plat-
forms. A further challenge was that, in con-
trast to other grid applications, the computa-
tional resources required to solve an optimiza-
tion problem often cannot be predicted with
much con�dence, making it di�cult to assem-
ble and utilize these resources e�ectively.

This article describes some of the results
we have obtained during the �rst three years
of the metaneos project. Our e�orts have
led to development of the runtime support li-
brary MW, for implementing algorithms with
master-worker control structure on Condor
platforms. This work is discussed below, along
with our work on algorithms and codes for in-
teger linear programming, the quadratic as-
signment problem, and stochastic linear pro-
gramming. Other metaneos work, not dis-
cussed below, includes work in global opti-
mization, integer nonlinear programming, and
veri�cation of solution quality for stochastic
programming.

2 Condor, Globus, and the

MW Framework

The Condor system [2, 3] had its origins at
the University of Wisconsin in the 1980s. It
focuses on collections of computing resources,
known as Condor pools, that are distribu-
tively owned. To understand the implications
of \distributed ownership," consider a typical
machine in a pool: a workstation on the desk
of a researcher. The Condor system provides
a means by which other users (not known to
the machine's owner) can exploit some of the
unused cycles on the machine, which other-
wise would sit idle most of the time. The
owner maintains control over the access rights
of Condor to his machine, specifying the hours

in which Condor is allowed to schedule pro-
cesses on the machine and the conditions un-
der which Condor must terminate any process
it is running when the owner starts a process of
his own. Whenever Condor needs to terminate
a process under these conditions, it migrates
the process to another machine in the pool,
guaranteeing eventual completion.
When a user submits a process, the Con-

dor system �nds a machine in the pool that
matches the software and hardware require-
ments of the user. Condor executes the user's
process on this machine, trapping any sys-
tem calls made by the process (such as in-
put/output operations) and referring them
back to the submitting machine. In this way,
Condor preserves much of the submitting ma-
chine's environment on the execution machine.
Users can submit a large number of processes
to the pool at once. Since each such pro-
cess maintains contact with the submitting
machine, this feature of Condor opens up the
possibility of parallel processing. Condor pro-
vides an opportunistic environment, one that
can make use of whatever resources currently
are available in its pool. This set of resources
grows and shrinks dynamically during execu-
tion of the user's job, and his algorithm should
be able to exploit this situation.
The Globus Toolkit [4] is a set of com-

ponents that can be used to develop applica-
tions or programming tools for computational
grids. Currently, the Toolkit contains tools
for resource allocation management and re-
source discovery across a grid, security and au-
thentication, data movement, message-passing
communication, and monitoring of grid com-
ponents. The main use of Globus within the
metaneos project has been at a level below
Condor. By a Globus mechanism known as
glide-in, a user can add machines at a remote
location into the Condor pool on a temporary
basis, making them accessible only to his own
processes. In this way, a user can marshal a
large and powerful set of resources over multi-
ple sites, some or all of them dedicated exclu-
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sively to his job.
MW is a software framework that facili-

tates implementation of algorithms of master-
worker type on computational grids. It was
developed as part of the metaneos project
by Condor team members Mike Yoder and
Sanjeev Kulkarni in collaboration with opti-
mization specialists Je� Linderoth and Jean-
Pierre Goux [5, 6]. MW takes the form of a
set of C++ abstract classes, which the user
implements to perform the particular opera-
tions associated with his algorithm and prob-
lem class. There are just ten virtual functions,
grouped into the following three fundamental
base classes:

� MWDriver contains four functions that
obtain initial user information, set up the
initial set of tasks, pack the data required
to initialize each worker processor as it
becomes available, and act on the results
that are returned to the master when a
task is completed.

� MWWorker contains two functions, to
unpack the initialization data for the
worker and to execute a task sent by the
master.

� MWTask contains four functions to pack
and unpack the data de�ning a single task
and to pack and unpack the results asso-
ciated with that task.

MW also contains functions that monitor per-
formance of the grid and gather various statis-
tics about the run.
Internally, MW works by managing a list of

workers and a list of tasks. The resource man-
agement mechanisms of the underlying grid
are used to obtain new workers for the list and
provide information about each worker. The
information can be used to order the worker
list so that the most suitable workers (e.g.,
the fastest machines) are at the head of the
list and hence are the �rst to receive tasks.
Similarly, the task list can be ordered by a

user-de�ned key to ensure that the most im-
portant tasks are performed �rst. Scheduling
of tasks to workers then becomes simple: The
�rst task on the list is assigned to the �rst
available worker. New tasks are added to the
list by the master process in response to results
received from completion of an earlier task.
MW is currently implemented on two

slightly di�erent grid platforms. The �rst uses
Condor's version of the PVM (parallel vir-
tual machine) protocol, while the second uses
the remote I/O features of Condor to allow
master and workers to communicate via series
of shared �les. In addition, MW provides a
\bottom-level" interface that allows it to be
implemented in other grid computing toolkits.

3 Integer Programming

Consider the linear mixed integer program-
ming problem

min cTx subject to Ax � b; l � x � u;

xi 2 Z; for all i 2 I;

where x is a vector of length n, Z represents
the integers, and I � f1; 2; : : :; ng. Paral-
lel algorithms and frameworks for this prob-
lem have been investigated by a number of
authors in recent times. The approaches de-
scribed in [7, 8, 9, 10] implement enhance-
ments of the branch-and-bound procedure, in
which the work of exploring the branch-and-
bound tree is distributed among a �xed num-
ber of processors. These approaches are di�er-
entiated by their use of virtual-shared-memory
vs. message-passing models, their load balanc-
ing procedures, their choice of branching rules,
and their use of cuts.
By contrast, the FATCOP code of Chen,

Ferris, and Linderoth [11] uses the MW
framework to greedily use whatever compu-
tational resources become available from the
Condor pool. The algorithm implemented
in FATCOP (the name is a loose acronym
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for \fault-tolerant Condor PVM") is an en-
hanced branch-and-bound procedure that uti-
lizes (globally valid) cuts, pseudocosts for
branching, preprocessing at nodes within the
branch-and-bound tree, and heuristics to iden-
tify integer feasible solutions rapidly.
In FATCOP's master-worker algorithm,

each task consists of exploration of a subtree
of the branch-and-bound tree, not just eval-
uation of a single node of the tree. Given
a root node for the subtree, and other infor-
mation such as the global cut and pseudocost
pools, the task executes for a given amount of
time, making its own branching decisions and
accumulating its own collection of cuts and
pseudocosts. It may also perform a \diving"
heuristic from its root node to seek a new in-
teger feasible solution. When the task is com-
plete, it returns to the master a stack repre-
senting the unexplored portions of its subtree.
(Depth-�rst search is used to limit the size of
this stack.) The task also sends back any new
cut and pseudocost information it generated,
which is added to the master's global cut and
pseudocost pools.
By processing a subtree rather than a sin-

gle node, FATCOP increases the granularity of
the task and improves utilization of the com-
putational power of each worker. The time for
which a processor is sitting idle while waiting
for the task information to be sent to and from
the master, and for the master to process its
results and assign it a new task, is generally
small relative to the computation time.
The master process is responsible for main-

taining the task pool, as well as the pools of
cuts and pseudocosts. It recognizes new work-
ers as they join the computation pool, and
send them copies of the problem data together
with the current cut and pseudocost pools.
Moreover, it sends tasks to these workers and
processes the results of these tasks by updating
its pools and possibly its incumbent solution.
Another important function of the master is to
detect when a machine has disappeared from
the worker pool. In this case, the task that was

Table 1: Performance of FATCOP on gesa2 o
�P Nodes Time

minumum 43.2 6207993 6951
average 62.5 8214031 10074
maximum 86.3 9693518 13198

occupying that machine is lost, and the mas-
ter must assign it to another worker. (This is
the \fault tolerant" feature that makes FAT-
COP fat!) On long computations, the mas-
ter process \checkpoints" by writing out the
current state of computation to disk. By do-
ing so, it can restart the computation at the
latest checkpoint after a crash of the master
processor.
To illustrate FATCOP's performance, we

consider the solution of the problem gesa2 o
from the MIPLIB test set. This problem arises
in an electricity generation application in the
Balearic Islands. FATCOP was run ten times
on the Condor pool at the University of Wis-
consin. Because of the dynamic computational
environment|the size and composition of the
pool of available workers and communication
times on the network varied between runs and
during each run|the search pattern followed
by FATCOP was quite di�erent in each in-
stance, and di�erent from what one would ob-
tain from a serial implementation of the same
approach. However, using the statistical fea-
tures of MW, we can �nd the average number
of workers used during each run, de�ned as

�P =
1X

k=1

k�k=T;

where �k is the total time during which the run
had control of k processors, and T is the wall
clock time for the run. The minimum, maxi-
mum, and mean values of �P over the ten runs
are shown in Table 1. This table also shows
statistics for the number of nodes evaluated by
FATCOP, and the wall clock times.
Figure 1 pro�les the size of the worker pool

during a particular run. Note the sharp dip,
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Figure 1: Number of Workers during FATCOP
on gesa2 o

which occurred when a set of machines partic-
ipated in a daily backup procedure, and the
gradual buildup during the end of the run,
which occurred in the late afternoon when
more machines became available as their own-
ers went home.
For a detailed performance analysis of FAT-

COP, see [11].
A separate but related activity involved

solving to optimality the well-known seymour
problem from the MIPLIB library of integer
programs. This well known integer program-
ming problem, posed by Paul Seymour, arises
in a new proof [12] of the famous Four-Color
Theorem, which states that any map can be
colored using four colors in such a way that
regions sharing a boundary segment receive
di�erent colors. The seymour problem is to
�nd the smallest set of con�gurations such the
Four-Color Theorem is true if none of these
con�gurations can exist in a minimal coun-
terexample. Although Seymour claimed to
have found a solution with objective value 423,
nobody (including Seymour himself) had been
able either to reproduce this solution, or prove
a strong lower bound on the optimal value.
There was some scepticism in the integer pro-
gramming community as to whether this was
indeed the optimal value.
In July 2000, a team of metaneos researchers

found solutions with the value 423, and proved
its optimality. Gabor Pataki, Stefan Schmi-
eta, and Sebastian Ceria at Columbia used
preprocessing, disjunctive cuts and branch-
and-bound to break down the problem into
a list of 256 integer programs. Michael Fer-
ris at Wisconsin and Je� Linderoth at Ar-
gonne joined the Columbia group in working
through this list. The problems were solved
separately with the help of the Condor sys-
tem, using the integer programming packages
CPLEX and XPRESS-MP. About 9000 hours
of CPU time was needed, the vast majority of
it spent in proving optimality.

4 Quadratic Assignment

Problem

The quadratic assignment problem (QAP) is
a problem in location theory that has proved
to be among the most di�cult combinato-
rial optimization problems to solve in practice.
Given n�n matrices A, B, and C, where Ai;j

represents the ow between facilities i and j,
Bi;j is the distance between locations i and
j, and Ci;j is the �xed cost of assigning fa-
cility i to location j, the problem is to �nd
the permutation f�(1); �(2); : : : ; �(n)g of the
index set f1; 2; : : : ; ng that minimizes the fol-
lowing objective:

nX

i=1

nX

j=1

Ai;jB�(i);�(j) +
nX

i=1

Ci;�(i):

An alternative matrix-form representation is
as follows:

QAP(A;B;C): mintr(AXB + C)XT ;

s.t. X 2 �;

where tr(�) represents the trace and � is the
set of n� n permutation matrices.
The practical di�culty of solving instances

of the QAP to optimality grows rapidly with
n. As recently as 1998, only the second-largest
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problem (n = 25) from the standard \Nu-
gent" benchmark set [13] had been solved, and
this e�ort required a powerful parallel plat-
form [14]. In June 2000, a team consisting of
Kurt Anstreicher and Nate Brixius (Univer-
sity of Iowa) and metaneos investigators Jean-
Pierre Goux and Je� Linderoth solved the
largest of the Nugent problems|the n = 30
instance known as nug30|verifying that a so-
lution obtained earlier from a heuristic was op-
timal [15]. They devised a branch-and-bound
algorithm based on a convex quadratic pro-
gramming relaxation of QAP, implemented it
using MW, and ran it on a Condor-based com-
putational grid spanning eight institutions.
The computation used over 1000 worker pro-
cessors at its peak, and ran for a week. It was
solving linear assignment problems (the core
computational operation in the algorithm) at
the rate of nearly a million per second during
this period.
In the remainder of this section, we outline

the various theoretical, heuristic, and compu-
tational ingredients that combined to make
this achievement possible.
The convex quadratic programming (QP)

relaxation of QAP proposed by Anstreicher
and Brixius [16] yields a lower bound on the
optimal objective that is tighter than alter-
native bounds based on projected eigenvalues
or linear assignment problems. Just as impor-
tant, an approximate solution to the QP relax-
ation can be found at reasonable cost by ap-
plying the Frank-Wolfe method for quadratic
programming. Each iteration of this method
requires only the solution of a dense linear as-
signment problem|an inexpensive operation.
Hence, the Frank-Wolfe method is preferable
in this context to more sophisticated quadratic
programming algorithms; its slow asymptotic
convergence properties are not important be-
cause only an approximate solution is required
The QAP is solved by embedding the QP re-

laxation scheme in a branch-and-bound strat-
egy. At each node of the branch-and-bound
tree, some subset of the facilities is assigned

to certain locations|in the nodes at level k of
the tree, exactly k such assignments have been
made. At a level-k node, a reduced QAP can
be formulated in which the unassigned part
of the permutation (which has n � k compo-
nents) is the unknown. The QP relaxation can
then be used on this reduced QAP to �nd an
approximate lower bound on its solution, and
therefore on the cost of all possible permuta-
tions that include the k assignments already
made at this node. If the bound is greater than
the cost of the best permutation found to date
(the incumbent), the subtree rooted at this
node can be discarded. Otherwise, we need to
decide whether and how to branch from this
node.
Branching is performed by choosing a facil-

ity and assigning it to each location in turn
(row branching) or by choosing a location and
assigning each of the remaining facilities to it
in turn (column branching). However, it is not
always necessary to examine all possible n� k
children of a level-k node; some of them can
be eliminated immediately by using informa-
tion from the dual of the QP relaxation. In
fact, one rule for deciding the next node from
which to branch at level k of the tree is to
choose the node that yields the fewest chil-
dren. A more expensive branching rule, us-
ing a strong branching technique, is employed
near the root of the tree (k smaller). Here, the
consequence of �xing each one of a collection
of promising facilities (or locations) is evalu-
ated by provisionally making the assignment
in question and solving the corresponding QP
relaxation. Estimates of lower bounds are then
obtained for the grandchildren of the current
node, and these are summed. The node for
which this summation is largest is chosen as
the branching facility (location).
The branching rule and the parameters that

govern the execution of the branching rule are
chosen according to the level in the tree and
also the gap, which measures the closeness of
the lower bound at the current node to the
incumbent objective. When the gap is large at
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a particular node, it is likely that exploration
of the subtree rooted at this node will be a
costly process. Use of a more elaborate (and
expensive) branching rule tends to ensure that
exploration of unpro�table parts of the subtree
is avoided, thereby reducing overall run time.
Parallel implementation of the branch-and-

bound technique uses an approach not unlike
the FATCOP code for integer programming.
Each worker is assigned the root node of a sub-
tree to explore, in a depth-�rst fashion, for a
given amount of time. When its time expires,
it returns unexplored nodes from its subtree to
the master, together with any new incumbent
information. The pool of tasks on the mas-
ter is ordered by the gap, so that nodes with
smaller gaps (corresponding to subtrees that
should be less di�cult to explore) are assigned
�rst. To reduce the number of easy tasks re-
turned to the master, a \�nish-up" heuristic
permits a worker extra time to explore its sub-
tree if its gap becomes small.
Exploitation of the symmetries that are

present in many large QAPs is another impor-
tant factor in making solution of nug30 and
other large problems a practical proposition.
Such symmetries arise when the distance ma-
trix is derived from a rectangular grid. Sym-
metries can be used, for instance, to decrease
the number of child nodes that need to be
formed (to considerably fewer than n� k chil-
dren at a level-k node).
Prediction of the performance pro�le of a

run is also important in tuning algorithmic pa-
rameters and in estimating the amount of com-
putational resources needed to tackle the prob-
lem. An estimation procedure due to Knuth
was enhanced to allow prediction of the num-
ber of nodes that need to be evaluated at each
level of the branch-and-bound tree, for a spe-
ci�c problem and speci�c choices of the algo-
rithmic parameters.
Figure 2 shows the number of workers used

during the course of the nug30 run in early
June 2000. As can be seen from this graph, the
run was halted �ve times|twice because of
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Figure 2: Number of Workers during nug30
Computation

failures in the resource management software
and three times for system maintenance|and
restarted each time from the latest master
checkpoint.
In the weeks since the nug30 computation,

the team has solved three more benchmark
problems of size n = 30 and n = 32, us-
ing even larger computational grids. Several
outstanding problems of size n = 36 derived
from a backboard wiring application continue
to stand as a challenge to this group and to the
wider combinatorial optimization community.

5 Stochastic Programming

The two-stage stochastic linear programming
problem with recourse can be formulated as
follows:

minx Q(x)
def
= cTx+

PN

i=1 piQi(x)

subject to Ax = b; x � 0;

where

Qi(x)
def
= min

yi
qTi yi s.t.Wyi = hi�Tix; yi � 0:

The uncertainty in this formulation is modeled
by the data triplets (hi; Ti; qi), i = 1; 2; : : : ; N ,
each of which represents a possible scenario
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for the uncertain data (h; T; q). Each pi rep-
resents the probability that scenario i is the
one that actually happens; these quantities are
nonnegative and sum to 1. The quantities pi,
i = 1; 2; : : : ; N are nonnegative and sum to 1;
pi is the probability that scenario i is the true
one.
The two-stage problem with recourse rep-

resents a situation in which one set of deci-
sions (represented by the �rst-stage variables
x) must be made at the present time, while
a second set of decisions (represented by yi,
i = 1; 2; : : : ; N ) can be deferred to a later time,
when the uncertainty has been resolved and
the true second-stage scenario is known. The
objective function represents the expected cost
of x, integrated over the probability distribu-
tion for the uncertain part of the model.
In many practical problems, the number of

possible scenarios N either is in�nite (that is,
the probability distribution is continuous) or is
�nite but much too large to allow practical so-
lution of the full problem. In these instances,
sampling is often used to obtain an approxi-
mate problem with fewer scenarios.
Decomposition algorithms are well suited to

grid platforms, because they allow the com-
putations associated with the N second-stage
scenarios to be performed independently and
require only modest amounts of data move-
ment between processors. These algorithms
view Q as a piecewise linear, convex function
of the variables x, whose subgradient is given
by the formula

@Q(x) = c +
NX

i=1

pi@Qi(x):

Evaluation of each functionQi, i = 1; 2; : : :; N
requires solution of the linear program in yi
given above. One element of the subgradient
@Qi(x) of this function can be calculated from
the dual solution of this linear program.
In the metaneos project, Linderoth and

Wright [17] have implemented a decomposi-
tion algorithm based on techniques from non-

smooth optimization and including various en-
hancements to lessen the need for the master
and workers to synchronize their e�orts. In
the remainder of this section, we outline in
turn the trust-region algorithm ATR and its
convergence properties, implementation of this
algorithm on the Condor grid platform using
MW, and our \asynchronous" variant.
The ATR algorithm progressively builds up

a piecewise-linear model function M (x) sat-
isfying M (x) � Q(x) for all x. At the kth
iteration, a candidate iterate z is obtained by
solving the following subproblem:

minz M (z) subject to Az = b; z � 0;

kz � xkk1 � �;

where the last constraint represents a trust re-
gion with radius � > 0. The candidate z be-
comes the new iterate xk+1 if the decrease in
objective Q(xk) � Q(z) is a signi�cant frac-
tion of the decrease Q(xk) �M (z) promised
by the model function. Otherwise, no step is
taken. In either case, the trust-region radius
� may be adjusted, function and subgradient
information about Q at z is used to enhance
the model M , and the subproblem is solved
again. The algorithm uses a \multicut" vari-
ant in which subgradients for partial sums ofPN

I=1Qi(z) are included in the model sepa-
rately, allowing a more accurate model to be
constructed in fewer iterations.
In the MW implementation of the ATR al-

gorithm, the function and subgradient infor-
mation de�ningM is accumulated at the mas-
ter processor, and the subproblem is solved on
this processor. (Since M is always piecewise
linear and the trust region is de�ned by an
1-norm, the subproblem can be formulated
as a linear program.) Most of the computa-
tional work in the algorithm involves solution
of the N second-stage linear programs in yi,
from which we obtain Qi(z) and @Qi(z). This
work is distributed among T tasks, to be exe-
cuted in parallel, where each task requires so-
lution of a \chunk" of N=T second-stage linear
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programs.
The use of chunking allows problems with

very large N to make e�cient use of a fairly
large number of processors. However, the
approach still requires evaluation of all the
chunks for Q(z) to be completed before de-
ciding whether to accept or reject z as the
next iterate. It is possible that one chunk
will be processed much more slowly than the
others|its computation may have been inter-
rupted by the workstation's owner reclaiming
the machine, for instance. All the other work-
ers in the pool will be left idle while waiting
for evaluation of this chunk to complete.
The ATR method maintains not just a sin-

gle candidate for the next iterate but rather
a basket B containing 5 to 20 possible candi-
dates. At any given time, the workers are eval-
uating chunks of second-stage problems asso-
ciated with one or other of these basket points.
ATR also maintains an \incumbent" xI, which
is the current best estimate of the solution and
is a point for which Q(xI) is known. When
all the chunks for one of the basket points z
have been evaluated, Q(z) is compared with
the incumbent objective Q(xI) and with the
decrease predicted by the model function M
at the time z was generated. As a result, ei-
ther z becomes the new incumbent and xI is
discarded, or xI remains the incumbent and z
is discarded. In either case, a vacancy is cre-
ated in the basket B. To �ll the vacancy, a
new candidate iterate z0 is generated by solv-
ing a subproblem with the trust-region con-
straint centered on the incumbent, that is,

kz0 � xIk1 � �:

We show results obtained for sampled in-
stances of problems from the stochastic pro-
gramming literature, using the MW imple-
mentation of ATR running on a Condor pool.
The SSN problem described in [18] arises in
design of a network for private-line telecom-
munications services. In this model, each of 86
parameters representing demand can indepen-
dently take on 3 to 7 values, giving a total of

Table 2: SSN, with N = 10; 000
Run Iter. Procs. E�. Time (min.)
L 255 19 .46 398

ATR-1 47 19 .35 130
ATR-10 164 71 .57 43

approximately N = 1070 scenarios. Sampling
is used to obtain problems with more modest
values of N , which are then solved with ATR.

Results for an instance of SSN with N =
10000 are shown in Table 2. When writ-
ten out as a linear program in the un-
knowns (x; y1; y2; : : : ; yN ), this problem has
approximately 1; 750; 000 rows and 7; 060; 000
columns. Table 2 compares three algorithms.
The �rst is an L-shaped method (see [19]),
which obtains its iterates from a model func-
tionM but does not use a trust region or check
su�cient decrease conditions. (The implemen-
tation described here is modi�ed to improve
parallelism, in that it does not wait for all the
chunks for the current point to be evaluated
before calculating a new iterate.) The second
entry in Table 2 is for the synchronous trust-
region approach (which is equivalent to ATR
with a basket size of 1), and the third entry is
for ATR with a basket size of 10. In all cases,
the second-stage evaluations were divided into
10 chunks, and 50 partial subgradients were
added toM at each iteration. The table shows
the average number of processors used during
the run, the proportion of time for which these
processors were kept busy, and the wall clock
time required to �nd the solution.

The trust-region approaches were consider-
ably faster than the L-shaped approach, in-
dicating that the need for sound algorithms
remains as keen as ever in a parallel environ-
ment; we cannot rely on raw computing power
to do all the work. The bene�ts of asyn-
chronicity can also be seen. When ATR has
a basket size of 10, it is able to use a larger
number of processors and takes less time to
complete, even though the number of iterates
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Table 3: storm, with N = 250; 000
Run Iter. Procs. E�. Time (min.)

ATR-1 25 67 .57 211
ATR-5 57 86 .96 229

increases signi�cantly over the synchronous
trust-region approach.
The real interest lies, however, not in solv-

ing single sampled instances of SSN, but in
obtaining high-quality solutions to the under-
lying problem (the one with 1070 scenarios).
ATR gives a valuable tool that can be used in
conjunction with variance reduction and veri-
�cation techniques to yield such solutions.
Finally, we show results from the \storm"

problem, which arises from a cargo ight
scheduling application [20]. The ATR im-
plementation was used to solve a sampled
instance with N = 250; 000, for which
the full linear program has approximately
132; 000; 000 rows and 315; 000; 000 columns.
The results in Table 3 show that this huge
linear program with nontrivial structure can
be solved in less than 4 hours on a compu-
tational platform that costs essentially noth-
ing. Because the second-stage work can be
divided into a much larger number of chunks
than for SSN|125 chunks, rather than 10|
the synchronous trust-region algorithm is able
to make fairly e�ective use of an average of
67 processors and requires less wall clock time
than ATR with a basket size of 5.

6 Conclusions

Our experiences in the metaneos project have
shown that cheap, powerful computational
grids can be used to tackle large optimiza-
tion problems of various types. These results
have several interesting implications. In an
industrial or commercial setting, the results
demonstrate that one may not have to buy
powerful computational servers to solve many
of the large problems arising in areas such as

scheduling, portfolio optimization, or logistics;
the idle time on employee workstations (or,
at worst, an investment in a modest cluster
of PCs) may do the job. For the optimiza-
tion research community, our results motivate
further work on parallel, grid-enabled algo-
rithms for solving very large problems of other
types. The fact that very large problems can
be solved cheaply allows researchers to bet-
ter understand issues of \practical" complex-
ity and of the role of heuristics. In stochastic
optimization, higher-quality solutions can be
found, and improvements to samplingmethod-
ology can be investigated.
Work remains to be done in making the grid

infrastructure robust enough for general use.
The logistics of assembling a grid|issues of
security and shared ownership|remain chal-
lenging. The vision of a computational grid
that is as easy to tap into as the electric power
grid remains far o�, though metaneos gives a
glimpse of the way in which optimizers could
exploit such a system.
We have investigated just a few of the prob-

lem classes that could bene�t from solution
on computational grids. Global optimiza-
tion problems of di�erent types should be ex-
amined further. Data-intensive applications
(from tomography and data mining) represent
a potentially huge �eld of work, but these re-
quire a somewhat di�erent approach from the
compute-intensive applications we have con-
sidered to date.
We hope that optimizers of all avors, along

with grid computing experts and applications
specialists, will join the quest. There's plenty
of work for all!
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